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ABSTRACT
How do we find important nodes in a large-scale graph? We pro-
pose a novel ranking framework that works for large, undirected
graphs, handles the degree dilemma and includes PageRank and
HITS as special cases. The main idea behind our framework is a
principled way to merge multiscale information on graphs. The ad-
vantages of our algorithm are (a) generality: it includes PageRank
and HITS as special cases; (b) quality: it outperforms PageRank
in the tasks of ranking movies, it outperforms HITS on discon-
nected graphs, and it detects local information that is ignored by
both HITS and PageRank; (c) scalability: it is efficient for large-
scale graphs.

Categories and Subject Descriptors
H.2.8 [Database management]: :Database applications-Data min-
ing

Keywords
Ranking algorithm; PageRank; HITS

1. INTRODUCTION
Ranking is valuable in numerous settings, including ranking of web
results [6, 22, 17, 10, 32, 21], personalized ranking [18, 3, 33], im-
portance and influence propagation in blogs [20], recommendation
systems and node-proximity estimation [26], strength and influence
of friendships [8, 24], ranking in relational databases [2, 14, 1],
ranking in citation networks [9, 15], and document ranking [27],
among others.

PageRank [6] and HITS [22] are two well-known ranking algo-
rithms; they both have shortages, however. When a graph is undi-
rected, the solution of PageRank is approximately proportional to
the degree distribution of the graph [16]; HITS only considers a

subgraph that focuses on the given search term and runs at search
time. Moreover, these algorithms conflict; for example, when we
want to compare the importance between Mike and Tom in Fig-
ure 1, PageRank with flyout claims that Mike is more important
than Tom, and HITS claims the opposite result. For PageRank, a
high-degree neighbor dilutes the turning-back probability, which
diminishes the importance; for HITS, a high-degree neighbor accu-
mulates the hub scores, which promotes the importance. In other
words, a significant difference between the two algorithms is how
to treat the degree of a graph; we call this the degree dilemma.

Over the years, many ranking algorithms have been proposed to im-
prove PageRank and HITS from different perspectives. For exam-
ple, [31] proposed a nonlinear dynamical system to replace the pre-
vious linear dynamical systems; [29] proposed a measure to quan-
tify the goodness of a ranking list and optimize the results based
on the proposed measure; [12, 23] proposed SimRank, which mea-
sures similarity by computing the first-meeting probability of two
random surfers, based on the random surfer model; [11] studied
rankings that allow ties; [10, 16] studied the degree heuristic; [10,
16] proposed a ranking algorithm based on a matching models
learning from training data; [30] proposed a ranking algorithm that
works for local graphs. None of these extended algorithms ac-
knowledge the degree dilemma.

Figure 1: Is Mike more important than Tom? Degree dilemma:
PageRank ranks Mike higher, but HITS ranks Tom higher.

To handle the degree dilemma, we revist PageRank and HITS and
propose a simple, and unified ranking framework that bridges PageR-
ank and HITS; we name it ZoomRank. We further optimize the
parameters of the framework and propose a new algorithm Zoom-
RankOpt, which provides competitive empirical performance on
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Figure 2: ZoomRank (ZR) includes four special cases; Zoom-
RankOpt ties HITS and outperforms PageRank in rankinng the
Nexflix movies. Lower normalized MSE means better perfor-
mance.

various datasets; see Figure 2 for an example.

The concept behind ZoomRank (responsible for its name as well) is
the fact that we treat a graph structure as a scene in which the algo-
rithm works as a camera capturing important information. Zoom-
Rank provides a general understanding to bridge PageRank and
HITS; it is also flexible and allows us to handle the degree dilemma.
The main idea behind ZoomRank is a principled way to merge mul-
tiscale information on graphs, which is similar to switching the fo-
cal length of a camera. The advantages of ZoomRank are

• Generality: it provides a general understanding of ranking
algorithms and includes PageRank and HITS as special cases;
it can switch between the local focus and the global focus on
graphs;
• Quality: it outperforms PageRank in the tasks of ranking

movies; it outperforms HITS on disconnected graphs; and it
detects local information that is ignored by both HITS and
PageRank;
• Scalability: it is efficient for large-scale graphs.

The outline of the paper is typical: we give the survey (Section 2),
the proposed method (Section 3), experiments (Section 4), and con-
clusions (Section 5).

2. BACKGROUND AND RELATED WORK
We consider an undirected graph, denoted as G = (V,A), where
V = {vn}Nn=1 is the set of nodes and A ∈ RN×N is a symmetric
adjacency matrix. The adjacency matrix represents the connections
between nodes and the edge weight Ai,j between nodes vi and vj
is a quantitative expression of the underlying relation between the
ith node and the jth node, such as a similarity, a friendship, a de-
pendency, or a communication pattern. When Ai,j is zero, it means
that there is no connection between the ith node and the jth node.
Let D be a diagonal degree matrix with Di,i =

∑
j Ai,j .

Let Ã = D−γ AD−β be a normalized adjacency matrix, where
γ is the out-degree influence factor and β is the in-degree influ-
ence factor. The influence factors α, β control how we normalize
the adjacency matrix. When γ, β = 0, then Ã is an unnormal-
ized adjacency matrix; when γ = 0, β = 1, then Ã = AD−1

is normalized by the in-degrees, which turns out to be a transition
matrix. Ãi,j denotes the probability transiting from the ith node
to the jth node and the sum of each column in Ã is one; when
γ = 1, β = 0, then Ã = D−1 A is normalized by the out-degrees,
which turns out to be a consensus matrix; when γ = 1/2, β = 1/2,
Ã = D−1/2 AD−1/2 is normalized by both in-degrees and out-
degrees. The other combinations of γ and β have rarely been con-
sidered previously.

The importance score is defined as a map that assigns a value xi ∈
R to the node vi, where xi reflects the importance of the node vi;
the larger the xi, the more important the node vi. We collect the
importance scores of all the nodes as a vector

x =
[
x1 x2 . . . xN

]T ∈ RN ,

where the ith vector element xi is indexed by the node vi. The goal
of a ranking algorithm is to design an importance score based on
the graph structure; in other words, we aim to design an algorithm
to automatically obtain x from A, where x reflects the importance
of all the nodes. The final ranking is x sorted in a descending order.
Table 1 summarizes the list of symbols we use.

Symbols Definitions

A adjacency matrix
Ã normalized adjacency matrix
P lens matrix (defined in Section 3.2)
I identity matrix
D degree matrix
x importance score
e initialization score
x(k) result of the kth iteration
K total number of iterations
δk indicator vector

Table 1: Symbols and definitions.

As mentioned in Section 1, many ranking algorithms based on
graphs are extended from PageRank and HITS. In this paper, we
revisit these two seminal works and study their connections to the
degree heuristic. We start with random walk with restart, which
provides a family of algorithms and includes PageRank as a special
case.

2.1 Random Walk with Restart
Random walk with restart uses a steady-state distribution of ran-
dom particles to represent the importance of a node [28]. We obtain
the steady-state distribution iteratively as follows:

x(k+1) ← c Ãx(k) + (1− c)e, (1)

where c is a probability that return to the original node, Ã is a
normalized adjacency matrix, and e is a starting vector, where each
element initializes the prior importance of each node. We call c as a
return probability and 1− c as a restart probability. The final score
is

x = (1− c)(I−c Ã)−1e. (2)

When Ã = AD−1, the solution to (2) is the PageRank; when a
graph is undirected, the solution to (2) is approximately the degree,
which means that the normalization and the iterative computations
do not benefit to the solutions. We will show this in Section 3.3.



As shown in Section 1, because of the normalization of the adja-
cency matrix, random walk with restart sometimes underestimates
the influence of the high-degree nodes.

2.2 HITS
HITS assigns two scores, a hub score and an authority score to each
node in a graph [22]. Let xh,xa ∈ RN be vectors representing the
hub scores and authority scores of all the nodes, respectively. These
are computed iteratively as follows:

x
(k+1)
h ← Ax(k)

a , and x(k+1)
a ← AT x

(k+1)
h , (3)

where k denotes the kth iteration, and xh and xa are normalized
after each iteration. Intuitively, the hub score of a node is the sum
of the authority scores of all the nodes to which it points, while the
authority score of a node is the sum of the hub scores of all the
nodes that point to it. For undirected graphs, since A is symmetric,
the hub score and the authority score for each node are the same.
Under appropriate conditions, xh converges to the first left singular
vector of A and xa converges to the first right singular vector of A.
In other words, HITS finds the largest subgraph, or community, and
only ranks the nodes in this subgraph. This restricts HITS to run at
search time. As shown in Section 1, HITS uses the unnormalized
adjacency matrix and sometimes overestimates the importance of
the high-degree nodes.

3. OUR UNIFYING FRAMEWORK
In this section we present the proposed method, we analyze it and
provide the reader with several interesting observations, at least in
our opinion.

3.1 Intuition
The main idea behind our algorithm is to merge multiscale infor-
mation on graphs (see Figure 3 for illustration). The blue region
shows the neighbors of node a (first-order neighbors) and the red
region shows the neighbors of neighbors of node a (second-order
neighbors). To evaluate the importance of node a, the degree only
considers the blue region and counts the number of neighbors of
node a, which represents local information. Since local informa-
tion is limited, we aim to obtain a flexible tradeoff between local
focus and global focus; we also consider the red region and other
far-away regions, which represents more global information. In our
method, for each node, we partition the graph into multiple scales
based on the geodesic distance to the node and then we weigh the
number of neighbors from multiple scales. Intuitively, the more
local scale gets higher weight.

3.2 Algorithm
Let P ∈ RN×N be a lens matrix of a graph G. It is not neces-
sarily an adjacency matrix; it just reflects the graph structure. Let
e ∈ RN be an initialization score, whose element represents the
prior importance of each node. Let x(k) = Pk e be the kth-order
generalized degree based on the lens matrix P. When P is an un-
normalized adjacency matrix, P = A, and e = 1, the ith ele-
ment in x(1) counts the total number of neighbors of the ith node,
which is the degree and the ith element in x(k) counts the total
number of nodes that the ith node accesses in k steps. We call
x(k) the kth-order generalized degree because P is not necessarily
the unnormalized adjacency matrix and e is not necessarily con-
stant. Each element in the kth-order generalized degree represents
an accumulation of information from a certain geodesic distance.
When k is small, x(k) considers local information; as k increases,

Figure 3: Intuition behind the proposed algorithm. For each node,
we partition the graph into multiple scales based on the geodesic
distance to the node and weigh information from these scales. Blue
region denotes the nodes with geodesic distance 1 from node a,
and pink region denotes the nodes with geodesic distance 2 from
node a. These two regions contribute to the importance of node a
differently.

x(k) starts to consider more global information. We combine infor-
mation from multiple scales by weighting the generalized degrees
from multiple orders as

x =

K∑
k=0

αkx
(k) =

K∑
k=0

αk P
k e = hα(P)e, (4)

where αk denotes the zoom factor of the kth order and hα(·) de-
notes a polynomial function with zoom factors α. The solution x is
a vector representation of the importance scores for all the nodes.

We first equally activate all the nodes and then propagate their ac-
tivation information on the graph through the lens matrix P. Each
time, when the activation information propagates from a node to its
neighbors, the importance of activation information diminishes by
some constant factor. We finally accumulate all the the activation
information withinK steps of the propagation at each node to be its
importance. We call (4) ZoomRank because it allows zooming in to
look at local information or zooming out to look at global informa-
tion on the graph, which is similar to switching the focal length of
a camera. ZoomRank can be implemented in an iterative fashion,
as shown in Algortihm 1.

Data: P: lens matrix
Result: x: importance score
initialization: k ← 0, x(k) ← 1, x← x(k) ;
while k < K do

x(k+1) ← Px(k) ;
x← x+ αkx

(k+1) ;
k ← k + 1 ;

Output: x;
Algorithm 1: ZoomRank: a simple linear dynamic system.

ZoomRank includes three tuning parameters: a lens matrix P, an
initialization score e, and a series of zoom factors α = {αk}Kk=1.
We treat a graph structure as a scene in which the algorithm works
as a camera capturing important information. The lens matrix works
as a lens that determines the quality of images; the initialization
score determines which part is more important to focus; the zoom
factors determine the focal length (vicinity or infinity). Without
loss of generality, we set the lens matrix as the normalized adja-
cency matrix, that is, P = Ã.



The choice of initialization score is useful for personalized rank-
ing [18, 33]. Without knowing any prior knowledge about user
preferences, initialization score is constant, e = 1. Depending on
specific applications, we choose how to normalize Ã and how to
choose the zoom factors, which will be discussed in Section 4. We
then parameterize ZoomRank as ZR(P, e, α).

Previously, we consider ZoomRank for general graphs. Here we
consider a special case for bipartite graphs, which will be used in
Section 4. A bipartite graph is a graph whose nodes can be divided
into two disjoint node sets, where any two nodes within the same
node set are not connected.

Let the sizes of two sets be N1 and N2 (N = N1 + N2), the
importance score be

x =

[
x1

x2

]
∈ RN ,

where x1 ∈ RN1 and x2 ∈ RN2 corresponds to the importance
scores for two node sets, respectively, and the lens matrix is repre-
sented as

P =

[
0 P1

P2 0

]
∈ RN×N ,

where P1 ∈ RN1×N2 and P2 ∈ RN2×N1 . Since the diagonal
blocks are zeros, we can update x1 and x2 separately, which re-
duces the computational cost.

3.3 Theoretical Analysis
Here we provide some theoretical analysis for ZoomRank. In Sec-
tion 2.1, we mention that the solution of random walk with restart
is approximately the degree. Here we show the result.

THEOREM 1. (Random walk with restart is equivalent to “de-
gree" under some assumptions.) When A is symmetric, the nor-
malized adjacency matrix is Ã = D−(1−β) AD−β , and the return
probability is c = 1. When (2) has a unique solution, the solution
is x = dβ .

Proof: We just need to check that x = dβ satisfies the steady-state
requirement, x = Ãx.

Ãx = D−(1−β) AD−β dβ = D−(1−β) A ·1
= D−(1−β) d = dβ = x.

�

Theorem 1 shows that when the adjacency matrix A represents
undirected graphs, without considering the restart probability, the
solutions of random walk with restart are nothing but the degrees.
Even considering the restart probability, the solutions are approxi-
mately the degrees [16]. This means that the normalization of ad-
jacency matrix and the iterative computations do not benefit to the
solutions of random walk with restart.

We next show that random walk with restart and HITS are special
cases of ZoomRank.

THEOREM 2. (Random walk with restart is a special case of
ZoomRank.) Random walk with restart has the same solution with

ZoomRank when the lens matrix be c Ã+ 1−c
N

e1T , the initializa-
tion score be 1, and the zoom factor is δK , where K is the total
number of iterations and δK is an indicator vector with 1 at K and
0, otherwise.

Proof: When we do not consider the restart probability, Theorem 1
shows that the ranking results are nothing but the degrees, which is
ZR( A, 1, δ1).

When we consider the restart probability. Let P = Apage =

c Ã+ 1−c
N

e1T . Then, (1) can be reformulated as

x(k+1) = c Ãx(k) + (1− c)e

=

(
c Ã+

1− c
N

e1T
)
x(k)

= Px(k) = Pk+1 e.

This is ZR(Apage, 1, δK ). �

Theorem 2 shows that random walk without restart is a special case
of ZoomRank that focuses on the vicinity, and random walk with
restart is a special case of ZoomRank with a normalized adjacency
matrix as the lens matrix. Note that because of the normalization,
the solutions are still close to the degree, which still focuses on the
vicinity.

THEOREM 3. (HITS is a special case of ZoomRank.) HITS
has the same solution with ZoomRank when the lens matrix be[

0 A
AT 0

]
,

the initialization score be 1, and the zoom factor is δK .

Proof: Let

P =

[
0 A
AT 0

]
, and x =

[
xh
xa

]
.

Then, (3) can be reformulated as

x(k+1) =

[
x
(k+1)
h

x
(k+1)
a

]
=

[
0 A
AT 0

][
x
(k)
h

x
(k)
a

]
= Px(k) = Pk+1 e.

This is ZR(P, 1, δK ). �

Theorem 3 show that HITS records the steady-state distribution and
is a special case of ZoomRank that focuses on infinity. Comparing
to both random walk with restart and HITS, ZoomRank records
all the propagation processes, which include both local and global
information on a graph.

THEOREM 4. (ZoomRank has a closed-form solution.) Let
αk = ak with a < 1/λmax(P) and K goes to infinity, where λmax

is the largest eigenvalue of P . The closed-form solution of (4) is
(1− aP)−1e.



Proof: The closed-form solution is

x = lim
K→∞

K∑
k=0

αk P
k e

= lim
K→∞

K∑
k=0

(aP)ke = (1− aP)−1e.

�

As mentioned in Section 3.2, the core idea of ZoomRank is to
merge information from multiple geodesic distances. We quantify
the information from geodesic distance k (k steps away) by using
the kth-order generalized degrees. Here we show that ZoomRank
follows the ranking principles based on generalized degrees.

AXIOM 1. Let αk → 0, ZoomRank satisfies the following prin-
ciples:

• Two nodes have the same importance when the generalized
degrees of two nodes are the same in all the orders, that is,
x
(k)
a = x

(k)
b for all k; ;

• Node a is more important than node b when there exists an
integer k > 0, such that the kth-order generalized degree of
node a is larger than that of b and at the same time, for all
i ≤ k, the ith-order generalized degrees of node a are the
same with that of node b, that is, x(k)

a > x
(k)
b and x

(i)
a =

x
(i)
b , for all i ≤ k.

Axiom 1 shows a principle to compare the importance of nodes
based on generalized degrees: when two nodes have the same gen-
eralized degree in an order, we compare their generalized degrees
in the next order, until they are different. When P is an unnormal-
ized adjacency matrix, the kth-order generalized degree of node a
is the total number of nodes that are k steps away from node a. Fol-
lowing Axiom 1, more connections, larger generalized degree and
higher importance.

3.4 Complexity Analysis
THEOREM 5. The computational complexity of ZoomRank is

O(K ‖P‖0).

Proof: In each iteration, the bottleneck of computation is a matrix-
vector multiplication. The computational complexity depends on
the number of nonzero elements in P, which is ‖P‖0. We have K
iterations in total. �

4. EXPERIMENTS
Here we report experiments to answer the following questions

• Q1: How are parameters for ZoomRank chosen?
• Q2: How well does ZoomRank work on real data?

All experiments were performed on a laptop with 2.3 GHz Intel
Core i7 CPU and 16 GB 1600 MHz DDR3 memory.

4.1 Q1: parameter choice - ZoomRankOpt
ZoomRank includes three tuning parameters: the lens matrix P,
initialization score e, and the zoom factors α.

Lens matrix. From Theorem 2, we see that when the lens matrix is
the normalized adjacency matrix, the solutions of ZoomRank focus
on the vicinity, which are approximately the degrees. Instead of
iterating several times, we can set the lens matrix be an unnormal-
ized adjacency matrix and propagate only once. For this reason,
we consider the unnormalized adjacency matrix as the lens matrix
here.

Initialization score. Initialization score provides the prior impor-
tance before ranking. The choice is based on personalized infor-
mation. Without any prior information, we treat each node equally,
that is, e = 1. When we have the prior information, we can easily
adapt e and achieve personalized ranking.

Zoom factors. When zooming into the vicinity, we activate the first
zoom factor in (4), which is degree; when zooming out infinitely,
we activate the last zoom factor in (4), which is HITS; when we
want to combine both the local and global information, we set

αopt
k =

(
1− ε

λmax(A)

)k
, (5)

where ε = 0.05. We denote αopt = {αopt
k }

K
k=0. As shown in The-

orem 4, since ε > 0, ZoomRank converges to a closed-form solu-
tion. As the step k grows, the zoom factor αopt has an exponential
decay and ZoomRank mainly collects local information. Since ε
is small, the zoom factor decays slowly to capture sufficient global
information. Thus, ZoomRank collects multiscale information. We
call this setting ZoomRankOpt, that is ZR(A,1, αopt).

4.2 Quality
We validate the quality by studying two applications. The graphs
we used in our experiments are described in the table 2.

Description Nodes Edges

MovieLens 100K 2,625 10,000
Netflix 497,959 100,480,507
NELL 1,971,555 2,041,006

Table 2: Summary of real-world graphs used.

MovieLens. MovieLens dataset was collected by the GroupLens
Research Project at the University of Minnesota [19]. The dataset
was collected through the MovieLens web site (movielens.umn.edu)
during the seven-month period from September 19th, 1997 through
April 22nd, 1998. The dataset contains 100,000 ratings (1-5) from
943 users on 1682 movies and each user has rated at least 20 movies.

The goal here is to rank the importance of the movies without any
rating. We only know which movies users watch; for example, user
i watches movie j. The intuition behind ranking here is that (a) a
movie with more views tends to be better; (b) a user who watches
more movies tends to be more experienced and more important.
When we use the degree heuristic, we simply consider (a).

To use the ranking algorithms, we first construct a bipartite graph
to represent the the movie-user relation and the corresponding ad-



jacency matrix is

A =

[
0 Ab
ATb 0

]
∈ RN×N ,

where Ab ∈ RN1×N2 (N1 = 1682, N2 = 943, N = N1 + N2)
with

(Ab)i,j =

{
1, jth user watches ith movie;
0, otherwise.

We then consider four settings of ZoomRank, including “degree"
(the degree heuristic), PageRank, HITS and ZoomRankOpt. For
“degree", we rank the movies by counting how many users watch
each movie; for PageRank, we set the return probability is 0.85.
These four settings of ZoomRank focus on different information on
a graph: “degree" considers the local information by only counting
the number of the first-order neighbors; PageRank diminishes the
influence from neighbors by normalizing the degree, and the results
are similar to “degree" ; HITS considers the global information by
only considering the steady-state result; and ZoomRankOpt col-
lects multiscale information and has a closed-form solution, which
is shown in Theorem 4. For PageRank, HITS and ZoomRankOpt,
we iterate 100 times.

A good ranking algorithm should rank good movies to the top of
the ranking list. In the dataset, 943 users already provided their
opinions as the ratings. We thus simply compare the results of
the ranking algorithms to the average opinions of 943 users. Let
x ∈ RN be a vector containing ratings of all the movies averaged
over 943 users; for example, xi is the rating of movie i averaged
over 943 users. A subscript select a subset from x; for example,
xgroundtruth ∈ RM be a vector containing ratings of topM movies
with the highest averaged ratings in x, and xrank ∈ RM be a vec-
tor containing ratings of top M most important movies provided
by a ranking algorithm. We evaluate a ranking algorithm by the
normalized mean square error.

NormalizedMSE =
‖xgroundtruth − xrank‖22
‖xgroundtruth‖22

.

A smaller normalized mean square error means the ranking algo-
rithm is better because its result is closer to the groundtruth ratings.
Figure 4(a) compares the performance of four algorithms. We see
that ZoomRankOpt and HITS have similar performances, which
are much better than “degree" and PageRank. Recall that “degree"
only considers that a good movie tends to have more views, but
ignores that the ratings from different users may have different im-
portance: users who watch more movies tend be more importance.
On the other hand, ZoomRankOpt and HITS consider both aspects
by operating on movie data then user data iteratively. The differ-
ence of ZoomRankOpt and HITS is the zoom factors during the
interaction.

Table 3 shows the top 10 most important movies given by four rank-
ing algorithms in the MovieLens 100K dataset. The average ratings
of top 10 important movies provided by “degree", PageRank, HITS
and ZoomRankOpt are 3.75, 3.75, 4.05, and 4.05, respectively,
which again shows that ZoomRankOpt and HITS outperforms “de-
gree" and PageRank. Note that the average rating of all the movies
is 3.07, this means that all four of these algorithms detect fairly
good movies just from the movie-user relations. From Table 3,
we also see that the results provided by “degree" and PageRank
are similar, which validates Theorem 1. The results provided by
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Figure 6: Elapsed time grows with the size of dataset linearly.
ZoomRank ranks the Netflix dataset with 2, 667, 199 nodes within
a few minutes on a laptop.

ZoomRankOpt and HITS are also similar, which implies that global
information quickly dominates.

Netflix. The Netflix dataset was provided by Netflix, an online
DVD-rental and online video streaming service for conducting the
Netflix competition [5, 4]. The dataset contains 100, 480, 507 rat-
ings (1 − 5) from 480, 189 users on 17, 770 movies. Similarly to
the MovieLens 100K, we aim to rank the movies without knowing
any ratings. We use the same four algorithms for ranking.

Figure 4(b) compares the performance of four algorithms. We see
that ZoomRankOpt and HITS have similar performances, which
are better than “degree" and PageRank. Table 3 shows the top 10
most important movies in the MovieLens 100K dataset. The av-
erage ratings of top 10 most important movies provided by “de-
gree", PageRank, HITS and ZoomRankOpt are 3.78, 3.78, 3.97,
and 3.97, respectively. The average rating of all the movies is 3.23.
Similarity to MovieLens 100K, results provided by “degree" and
PageRank are similar and the results provided by ZoomRankOpt
and HITS are similar. We also show the scalability in Figure 6. We
see the elapsed time grows with the size of dataset linearly, which
validates Theorem 5.

4.3 Discussion
We next use a synthetic example and a dataset from the never end-
ing language learning system to further illustrate how ZoomRank
works under various parameter settings.

Synthetic data. Previously, we see both ZoomRankOpt and HITS
perform well on MovieLens 100K and Netflix. Here we show that
HITS fails in a simple synthetic dataset, but ZoomRankOpt still
works well.

We generate a graph with 200 nodes as shown in Figure 5(a). The
First 10 nodes form an Erdős-Rényi graph with connectivity proba-
bility 0.8; the other 190 nodes form a preferential-attachment graph
with one adding edge in each iteration. Figures 5(b) and (c) show
the importance scores of HITS and ZoomRankOpt, respectively.
We see that HITS only provides the scores for the first 10 nodes
and cannot distinguish the importance of the other 190 nodes. On
the other hand, ZoomRankOpt successfully detects the importance
of the first 10 nodes and also ranks the other 190 nodes well. Since
HITS only records the steady-state distribution, which is the first
eigenvector of the adjacency matrix when the graph is barely con-
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Figure 4: ZoomRanksOpt ties HITS and outperforms PageRank in the MovieLens 100K dataset. Lower Normalized MSE means better
performance.

ZR(A,1, δ1) ZR(Apage,1, δK ) ZR(A,1, δK ) ZR(A,1, αopt)
=“degree" = PageRank = HITS = ZoomRankOpt

Star Wars (4.36) Star Wars (4.36) Star Wars (4.36) Star Wars (4.36)
Contact (3.80) Contact (3.80) Return of the Jedi (4.01) Return of the Jedi (4.01)
Fargo (4.16) English Patient (3.66) Raiders of the Lost Ark (4.25) Raiders of the Lost Ark (4.25)
Return of the Jedi (4.01) Liar Liar (3.16) Fargo (4.16) Fargo (4.16)
Liar Liar (3.16) Scream (3.44) Pulp Fiction (4.06) Pulp Fiction (4.06)
English Patient (3.65) Fargo (4.16) Silence of the Lambs (4.29) Silence of the Lambs, The (4.29)
Scream (3.44) Return of the Jedi (4.01) Independence Day (3.44) Independence Day (3.44)
Toy Story (3.88) Air Force One (3.63) Empire Strikes Back (4.20) Toy Story (3.87)
Air Force One (3.63) Toy Story (3.87) Toy Story (3.87) Empire Strikes Back (4.20)
Independence Day (3.44) Independence Day (3.44) Back to the Future (3.83) Back to the Future (3.83)

Table 3: ZoomRank ranks top movies in the MovieLens 100K dataset. The groundtruth rating over 943 users is shown in the parentheses.
HITS and ZoomRankOpt outperform “degree" and PageRank.

ZR(A,1, δ1) ZR(Apage,1, δK ) ZR(A,1, δK ) ZR(A,1, αopt)
=“degree" = PageRank = HITS = ZoomRankOpt

Miss Congeniality (3.36) Miss Congeniality (3.36) Pirates of the Caribbean (4.15) Pirates of the Caribbean (4.15)
Independence Day (3.72) Independence Day (3.72) Independence Day (3.72) Miss Congeniality (3.36)
The Patriot (3.78) The Patriot (3.78) Miss Congeniality (3.36) Independence Day (3.72)
The Day After Tomorrow (3.44) The Day After Tomorrow (3.78) Forrest Gump (4.30) Forrest Gump (4.30)
Pirates of the Caribbean (4.15) Pirates of the Caribbean (4.15) Ocean’s Eleven (3.89) Pretty Woman (3.91)
Pretty Woman (3.91) Pretty Woman (3.91) Pretty Woman (3.91) The Patriot (3.78)
Forrest Gump (4.30) The Green Mile (4.31) The Patriot (3.78) Ocean’s Eleven (3.88)
The Green Mile (4.31) Con Air (3.45) The Sixth Sense (4.33) The Green Mile (4.31)
Con Air (3.45) Forrest Gump (4.30) The Bourne Identity (3.97) The Sixth Sense (4.33)
Twister (3.41) Twister (3.41) The Green Mile (4.31) The Bourne Identity (3.97)

Table 4: ZoomRank ranks top movies in the Netflix dataset. Average ratings are shown in the parentheses. HITS and ZoomRankOpt
outperform “degree" and PageRank.
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Figure 5: HITS fails to detect heavy hitters and ZoomRankOpt detects both block and heavy hitters. The simulated graph contains two
subgraphs: subgraph 1 is a Erdős-Rényi graph with 10 nodes and connectivity probability 0.8; subgraph 2 is a preferential-attachment graph
with 190 nodes and one adding edge in each iteration.

nected, HITS may assign an important score of zero to many nodes.
ZoomRankOpt avoids this by keeping track of the iterative pro-
cesses.

NELL. The never ending language learning system (NELL) is a
semantic machine learning system to develop means of answering
questions posed by users in natural language with no human inter-
vention in the process [25, 7]. Here we study a dataset collected
by NELL that contains 2, 041, 006 facts. Each fact is a triple con-
taining a subject, a verb and an object. The NELL dataset includes
1, 632, 580 subjects and 338, 975 objects in total [13]. The goal
is to rank the importance of the subjects and objects from those
facts. For example, we find the most important city in the NELL
data by looking for the most important subject related to the ob-
ject “city". The basic assumption is that (a) important facts appear
more frequently and (b) a fact tends to be more important when it
associates with an important subject or object.

We construct a bipartite graph to represent the the subject-object
relations and the corresponding adjacency matrix is

A =

[
0 Ab
ATb 0

]
∈ RN×N ,

where Ab ∈ RN1×N2 (N1 = 1, 632, 580, N2 = 338, 975, N =
N1 +N2 = 1971555) with

(Ab)i,j =

{
1, ith subject and jth object coappear;
0, otherwise.

To compare four algorithms, we show the top 10 most important
subjects related to the object of actor given by four algorithms in
Tables 5. Both “degree" and PageRank rank Tom Cruise as the
most important actor; HITS ranks Christian Bale as the most im-
portant actor; and ZoomRankOpt ranks Kevin Bacon as the most
important actor. People may have their own preferences and there
is no ground-truth of the ranking. Here we provide some analysis
of the connections of Tom Cruise, Christian Bale and Kevin Bacon
to understand how these ranking algorithms work.

Figure 7(a) shows the ego-graph of Tom Cruise. As a subject, Tom
Cruise directly connects to 14 objects, including 5 categories and
9 movies. When we look at the second-order neighbors, the cat-
egories of actor, celebrity, comedian, male and person US con-
tributes to 25602, 19242, 15637, 18141, and 10333 connections,
respectively; while 9 movies only contribute to 5 connections in
total.

Figure 7(c) shows the ego-graph of Christian Bale. As a subject,
Christian Bale directly connects to 11 objects, including 5 cate-
gories, which are the same with Tom Cruise, and 6 movies. Since
the number of the first-order neighbor of Christian Bale is smaller
than that of Tom Cruise, “degree" ranks Tom Cruise in the first
place and Christian Bale in the 6th place. However, when we
look at the second-order neighbors, Christian Bale’s 6 movies con-
tributes to 9 connects, which are larger than that of Tom Cruise.
This leads to HITS ranking Christian Bale as more important than
Tom Cruise.

Figure 7(b) shows the ego-graph of Kevin Bacon. As a subject,
Kevin Bacon directly connects to 7 objects, including 6 categories
and only 1 movies. The number of the first-order neighbor of Kevin
Bacon is smaller than that of Tom Cruise and Christian Bale, thus
“degree" ranks Kevin Bacon in the 88th place. However, Kevin Ba-
con connects to one more category, visualizablething, which brings
additional 2306 second-order connections. Kevin Bacon thus has
more connections in the second order and this leads to ZoomRankOpt
ranking Kevin Bacon in the first place.

Figure 7(d) shows who has more connection in different orders, that
is, we compare who has larger total number of k-step-away connec-
tions. We see that Tom Cruise has the most 1-step-away connec-
tions; Christian Bale has the most far-away connections; and Kevin
Bacon is in-between. Recall that “degree" only focuses on the
vicinity, which is the number of the first-order connections; HITS
focuses on the infinity, which is the number of large-order connec-
tions; ZoomRankOpt merges multiscale information and detects
the information in-between. This explains why both “degree" and
HITS treat Kevin Bacon as less important than Christian Bale, but
ZoomRankOpt treats Kevin Bacon as more important than Chris-
tian Bale. Based on different users’ needs, ZoomRank is flexible,
providing personalized results by focusing on different information
on graphs.

Why ZoomRank? As a general algorithm, ZoomRank works as
a plugin framework, that is, it allows for the selection of different
parameters to adapt to various real-world needs. ZoomRank not
only includes random walk with restart and HITS as special cases,
but also provides a conceptual bridge connecting random walk with
restart and HITS through the concept of generalized degree. It re-
veals that the normalization of the adjacency matrix leads to the
degree dilemma, and that the choice of zoom factors allows for the
detection of different information on the graph. We also propose a
new special case of ZoomRank, called ZoomRankOpt. It weighs



(a) Ego graph of Tom Cruise. (b) Ego graph of Kevin Bacon. (c) Ego graph of Christian Bale.
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Figure 7: ZoomRank is flexible. Tom Cruise (TC) has many 1-step-away connections, and wins out “degree" (=ZR(A,1, δ1); Christian Bale
(CB) has many far-away connections, and wins out HITS (=ZR(A,1, δK ); Kevin Bacon (KB) is in-between, and wins out ZoomRankOpt.

multiscale information and works as a supplement of random walk
with restart and HITS. When a graph is not well connected, HITS
only provides important scores for the nodes in the largest com-
ponent and the importance scores of all the other nodes are zero,
which makes HITS an online algorithm; see Figure 5. On the other
hand, PageRank and ZoomRankOpt are offline algorithms, provid-
ing important scores for all the nodes.

In practice, we usually do not have a groundtruth for ranking al-
gorithms without an expensive user study; it is then hard to eval-
uate whether one algorithm is better than the other. In this paper,
we consider evaluating the ranking algorithms in the task of rating
movies. The user study is implicitly provided by the ratings from
a large number of users; we rank the movies by sorting the users’
ratings and use this ranking as the groundtruth. The results are
thus less biased because of the large number of users. ZoomRank
provides good performance in both MovieLens 100K and Netflix
dataset, as shown in Figure 4. Since ZoomRank is a linear dynamic
system, it has nice convergence properties and is easily scalable.

5. CONCLUSIONS
We presented ZoomRank, which addresses the ranking problem
for large, undirected graphs. ZoomRank provides a general under-
standing to two seminal ranking algorithms, PageRank and HITS,
and includes them as special cases; it is also flexible in handling
the degree dilemma. The main idea behind ZoomRank is a princi-
pled way to merge multiscale information on the graph. ZoomRank
works like a camera that allows zooming in to look at local infor-
mation or zooming out to look at global information on graphs. The

advantages of our algorithm are

• Generality. ZoomRank provides a general ranking frame-
work that bridges random walk with restart and HITS, see
Theorems 2 and 3.
• Quality. ZoomRankOpt outperforms PageRank in ranking

movies, see Figure 4; ZoomRankOpt outperforms HITS in
disconnected graphs, see Figure 5; ZoomRankOpt detects the
local information that is ignored by both HITS and PageR-
ank, see Figure 7.
• Scalability. ZoomRank has the similar computational cost

with PageRank and HITS, see Theorem 5 and Figure 6.

Reproducibility: We have already open-sourced our code, at http:
//users.ece.cmu.edu/~sihengc/research.html
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